News

Livermore Lab works on 'universal' coronavirus vaccine

LLNL forms new partnership with UK firm

LLNL researchers Nick Fischer and Amy Rasley are characterizing nanolipoprotein particle vaccine formulations using a dynamic light-scattering instrument. Detailed characterization of the nanoparticles provides an important quality control metric for vaccine development. A United Kingdom company, ConserV Bioscience Limited, and LLNL have agreed to work on developing a universal coronavirus vaccine. (Photo by Julie Russell/LLNL)

Lawrence Livermore National Laboratory announced this week a new collaboration with a United Kingdom company to develop a broad-spectrum or "universal" coronavirus vaccine.

The scientists' work aims to provide broader protection against coronavirus pathogens of human and animal origin, including but not limited to MERS, SARS and SARS-CoV-2 -- the virus that causes COVID-19.

"We are pleased to be working with the Biosciences and Biotechnology Division at LLNL to develop our broad-spectrum coronavirus vaccine candidate," said Kimbell Duncan, CEO of ConserV Bioscience Limited, the UK-based company specializing in late-stage vaccine development that is now partnering with LLNL researchers.

"We have identified regions within the proteins of the virus that are not susceptible to change and if effective, the vaccine promises to protect against a broad spectrum of current circulating coronavirus strains and future emergent ones," Duncan added in a joint message.

On the technical side, the collaboration will bring together ConserV's expertise in identifying antigens and LLNL's nanolipoprotein particle (NLP) delivery system, according to officials at the labs.

What's local journalism worth to you?

Support PleasantonWeekly.com for as little as $5/month.

Learn more

The vaccine construct consists of conserved immunoreactive regions from external and internal coronavirus proteins, from each virus genus, encoded in messenger RNA, or mRNA, officials said. "The mRNA construct will be formulated with LLNL's propriety nanolipoprotein particle vehicle prior to injection, allowing freeze drying of both components separately to avoid cold chain storage and transport issues."

The NLPs, which are water-soluble molecules that are 6 to 30 billionths of a meter in size and resemble HDL particles in humans, are a nanotechnology (also known as nanodiscs) that LLNL scientists have been using as a delivery platform for tularemia and chlamydia vaccines that are under development, according to the lab.

"We look forward to combining our nanolipoprotein particle technology with ConserV's mRNA construct encoding conserved viral epitopes. We hope to advance the vaccine candidate to human trials as quickly as possible," LLNL biologist Amy Rasley said in a statement.

"Our NLP technology is very versatile, so we anticipate that we can tune our platform formulation to produce safe and effective vaccine candidates," added fellow LLNL principal investigator Nicholas Fischer, who is also working on the project in Livermore alongside Wei He, Matthew Coleman and Sandra Peters.

Coronaviruses, which are a group of single-stranded RNA viruses, can cause respiratory tract infections and other mild-to-lethal symptoms in humans -- and the novel strain of coronavirus (SARS-CoV-2) first identified in Wuhan, China in December 2019 has killed more than 2 million people worldwide and infected some 86-million-plus more during the ongoing pandemic.

Genomic analysis of SARS-CoV-2 indicates that the virus accumulates two mutations a month, and recent variants have been found to drastically increase infectivity, according to the labs. The 501.V2 mutation originating in South Africa "has been shown to reduce antibody recognition and could therefore affect the efficacy of the licensed vaccines," they said.

While the newly released inoculations focus on SARS-CoV-2, the recent mutations and other developments make the work toward creating a universal vaccine even more important, according to the labs.

"A broad-spectrum vaccine is a necessary next step to protect against continued mutations of SARS-CoV-2 as well as strains that jump from other host to humans or human strains that become more virulent and pose a pandemic threat," they said.

Stay informed

Get daily headlines sent straight to your inbox.

Sign up

Follow PleasantonWeekly.com and the Pleasanton Weekly on Twitter @pleasantonnews, Facebook and on Instagram @pleasantonweekly for breaking news, local events, photos, videos and more.

Livermore Lab works on 'universal' coronavirus vaccine

LLNL forms new partnership with UK firm

by / Pleasanton Weekly

Uploaded: Thu, Jan 21, 2021, 9:40 am

Lawrence Livermore National Laboratory announced this week a new collaboration with a United Kingdom company to develop a broad-spectrum or "universal" coronavirus vaccine.

The scientists' work aims to provide broader protection against coronavirus pathogens of human and animal origin, including but not limited to MERS, SARS and SARS-CoV-2 -- the virus that causes COVID-19.

"We are pleased to be working with the Biosciences and Biotechnology Division at LLNL to develop our broad-spectrum coronavirus vaccine candidate," said Kimbell Duncan, CEO of ConserV Bioscience Limited, the UK-based company specializing in late-stage vaccine development that is now partnering with LLNL researchers.

"We have identified regions within the proteins of the virus that are not susceptible to change and if effective, the vaccine promises to protect against a broad spectrum of current circulating coronavirus strains and future emergent ones," Duncan added in a joint message.

On the technical side, the collaboration will bring together ConserV's expertise in identifying antigens and LLNL's nanolipoprotein particle (NLP) delivery system, according to officials at the labs.

The vaccine construct consists of conserved immunoreactive regions from external and internal coronavirus proteins, from each virus genus, encoded in messenger RNA, or mRNA, officials said. "The mRNA construct will be formulated with LLNL's propriety nanolipoprotein particle vehicle prior to injection, allowing freeze drying of both components separately to avoid cold chain storage and transport issues."

The NLPs, which are water-soluble molecules that are 6 to 30 billionths of a meter in size and resemble HDL particles in humans, are a nanotechnology (also known as nanodiscs) that LLNL scientists have been using as a delivery platform for tularemia and chlamydia vaccines that are under development, according to the lab.

"We look forward to combining our nanolipoprotein particle technology with ConserV's mRNA construct encoding conserved viral epitopes. We hope to advance the vaccine candidate to human trials as quickly as possible," LLNL biologist Amy Rasley said in a statement.

"Our NLP technology is very versatile, so we anticipate that we can tune our platform formulation to produce safe and effective vaccine candidates," added fellow LLNL principal investigator Nicholas Fischer, who is also working on the project in Livermore alongside Wei He, Matthew Coleman and Sandra Peters.

Coronaviruses, which are a group of single-stranded RNA viruses, can cause respiratory tract infections and other mild-to-lethal symptoms in humans -- and the novel strain of coronavirus (SARS-CoV-2) first identified in Wuhan, China in December 2019 has killed more than 2 million people worldwide and infected some 86-million-plus more during the ongoing pandemic.

Genomic analysis of SARS-CoV-2 indicates that the virus accumulates two mutations a month, and recent variants have been found to drastically increase infectivity, according to the labs. The 501.V2 mutation originating in South Africa "has been shown to reduce antibody recognition and could therefore affect the efficacy of the licensed vaccines," they said.

While the newly released inoculations focus on SARS-CoV-2, the recent mutations and other developments make the work toward creating a universal vaccine even more important, according to the labs.

"A broad-spectrum vaccine is a necessary next step to protect against continued mutations of SARS-CoV-2 as well as strains that jump from other host to humans or human strains that become more virulent and pose a pandemic threat," they said.

Comments

There are no comments yet. Please share yours below.

Post a comment

In order to encourage respectful and thoughtful discussion, commenting on stories is available to those who are registered users. If you are already a registered user and the commenting form is not below, you need to log in. If you are not registered, you can do so here.

Please make sure your comments are truthful, on-topic and do not disrespect another poster. Don't be snarky or belittling. All postings are subject to our TERMS OF USE, and may be deleted if deemed inappropriate by our staff.

See our announcement about requiring registration for commenting.